Summary

The main subject of the research presented in the dissertation is the Coxeter spectral classification of finite connected partially ordered sets (posets) \(I \), encoded in the form of incidence matrices \(C_I \in \mathbb{M}_{|I|}(\mathbb{Z}) \), by means of symbolic and combinatorial algorithms. We consider posets \(I \) with symmetric Gram matrix \(G_I := \frac{1}{2}(C_I + C_I^t) \in \mathbb{M}_{|I|}(\mathbb{Z}) \) positive definite (positive posets) or positive semidefinite of rank \(|I| - r \) (nonnegative posets of corank \(r \)) and we classify them up to the \(\mathbb{Z} \)-congruence of incidence matrices (the relation \(\approx \mathbb{Z} \)), and \(\mathbb{Z} \)-congruence of symmetric Gram matrices (the relation \(\sim \mathbb{Z} \)).

The main problem considered in the dissertation is the problem of the existence of invariants that define a connected nonnegative poset \(I \) uniquely, up to the relation \(\approx \mathbb{Z} \). We show that in the case of positive posets with exactly one maximal element (i.e. one-peak posets) or at most \(|I| \leq 14 \) elements, such invariants are: the complex spectrum \(\text{specc}_I \subseteq \mathbb{C} \) of the Coxeter matrix \(\text{Cox}_I := -C_I \cdot (C_I^t)^{-1} \in \mathbb{M}_{|I|}(\mathbb{Z}) \) and the Dynkin type \(\text{Dyn}_I \in \{A_{|I|}, D_{|I|}, E_6, E_7, E_8\} \), uniquely associated to \(I \). Furthermore, we show that in the case of considered positive posets the relations \(\sim \mathbb{Z} \) and \(\approx \mathbb{Z} \) coincide. Next we present analogous results for the case of connected nonnegative posets of corank \(r \in \{1, 2\} \). In particular, we show that the pair \((\text{specc}_I, \text{Dyn}_I) \) is a good invariant in case of such posets.

The second important problem considered in the dissertation is the construction of algorithms, that find an \(\mathbb{Z} \)-invertible matrix \(B \in \mathbb{M}_n(\mathbb{Z}) \) that defines the \(I \approx \mathbb{Z} J \) relation between connected nonnegative posets \(I \) and \(J \) of \(n \) elements, i.e. satisfy the equality \(C_I = B^t \cdot C_J \cdot B \). We present two algorithms that solve this problem: first one is an exhaustive search algorithm, that guarantees to find a solution in a case of positive posets and the second one is the heuristic algorithm for a more general class of nonnegative posets.

The main results of the dissertation are: (a) algorithms that construct matrices defining the relation \(\approx \mathbb{Z} \); (b) the proof that, for broad classes of finite connected partially ordered sets, the following relations

\[
I \approx \mathbb{Z} J \iff I \sim \mathbb{Z} J \iff \text{specc}_I = \text{specc}_J \iff \text{Dyn}_I = \text{Dyn}_J
\]

hold; (c) a complete Coxeter spectral classification, up to the relations \(\sim \mathbb{Z} \) and \(\approx \mathbb{Z} \), of broad classes of finite partially ordered sets; (d) a complete Coxeter spectral classification, up to isomorphism, of one-peak posets that are positive or nonnegative of corank 1.