Streszczenie


Z drugiej strony w strukturach skończonych jesteśmy w stanie w prosty sposób rozstrzygać prawdziwość i fałszywość twierdzeń. Celem niniejszej rozprawy jest identyfikacja fragmentu matematyki, który ma skończenościowy charakter. Fragmentu matematyki, do którego opisu nie jest niezbędna aktualna nieskończoność, a wystarczy jedynie nieskończoność potencjalna. Jest to ta część matematyki, której pojęcia można wyrazić w modelach skończonych oraz prawdziwość twierdzeń której można w nich zweryfikować. Tę część matematyki, za Knuthem, nazywamy matematyką konkretną. Ma ona obliczeniowy, kombinatoryczny charakter i jest bliższa naszemu doświadczeniu niż matematyka idealna, a co za tym idzie jest trudniejsza.

Rozważamy konkretnie podstawy matematyki, w szczególności konkretną teorię modeli oraz semantykę bez aktualnej nieskończoności. Opieramy się na wprowadzonym przez Mostowskiego pojęciu FM-reprezentowalności, jako eksplicacji wyraźności bez aktualnej nieskończoności oraz twierdzeniu o FM-reprezentowalność identyfikującym FM-reprezentowalne pojęcia z tymi, które są obliczalne z problemem stopu jako wyrocznią.

Pokazujemy w jaki sposób można zinterpretować podstawowe pojęcia teorii modeli w języku bez aktualnej nieskończoności. Następnie badamy klasyczne konstrukcje teoriomodełowe pod kątem ich wykonalności w obszarze matematyki konkretnej. Prezentujemy twierdzenie o konkretniej pełności oraz twierdzenie o łatwej pełności, twierdzenie o omijaniu typów oraz twierdzenia o zachowaniu. Przedstawiamy konstrukcje, które są niewykonalne dla modeli konkretnych, identyfikując etapy konstrukcji teoriomodelowych, które nie są wykonalne w teorii modeli konkretnych. Identyfikujemy argumenty z aksjomatycznej teorii mnogości, które nie są dopuszczalne w konkretnie teorii modeli.